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Abstract. We will propose an outer-approximation (cutting plane) method for minimizing a func-
tion f (X) subject to semi-definite constraints on the variables X ∈ Rn×n. A number of efficient
algorithms have been proposed when the objective function is linear. However, there are very few
practical algorithms when the objective function is nonlinear. An algorithm to be proposed here is a
kind of outer-approximation(cutting plane) method, which has been successfully applied to several
low rank global optimization problems including generalized convex multiplicative programming
problems and generalized linear fractional programming problems, etc. We will show that this al-
gorithm works well when f is convex and n is relatively small. Also, we will provide the proof of its
convergence under various technical assumptions.
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1. Introduction

Semi-definite programming problems (SDP), namely minimization of a linear ob-
jective function subject to semi-definite constraints have been under intensive study
in recent years. SDP’s have surprisingly diverse practical applications in control
engineering, conbinatorial optimization, nonconvex quadratic programming, struc-
tural design and moment problems to name only a few. For a recent survey of these
applications, readers are referred to Vandenberghe-Boyd [19] and Wolkowicz-
Saigal-Vandenberghe [21].

Semi-definite programming problems can be viewed as a natural extension of
linear programming problems. In fact, we can define a dual problem for a given
SDP and the duality relation holds between these pairs of problems. Based upon
this observation, primal-dual interior point algorithms and path following algorithms
developed for linear programming problems have been extended to SDP’s, some
of which are even polynomial order algorithms [7]. Further, a number of efficient
softwares have been developed and used for solving the problems referred to above.
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Recently, Konno et al. [11] proposed an alternative outer approximation (cutting
plane) algorithm and demonstrated that it can solve a special class of SDP’s very
fast, much faster than SDPA 5.0 [5], a widely used software. This algorithm is
based upon the observation that an SDP is a linear programming problem with
infinitely many linear constraints as observed by Vandenberghe and Boyd [18]
and Konno and Kobayashi [13]. This class of problems is called semi-infinite pro-
gramming problems. To solve an SDP, we first solve a relaxed linear programming
problem with finite number of constraints. If the solution satisfies the semi-definite
constraint, then we are done. If not, we generate linear constraints which are viol-
ated at the optimal solution of the relaxed problem and generate a tighter relaxation
of the original problem by adding these constraints. This algorithm can be viewed
as an extension of classical cutting plane algorithms proposed by Kelley [10] and
Veinott [20] for convex minimization problems. Also, it is similar to outer approx-
imation algorithms successfully applied to low rank concave and d.c. minimization
problems [8, 14].

We applied this algorithm to failure discriminant analysis (Konno et al[12, 13]),
where two classes of multidimensional financial data are separated by a convex
quadratic surface, i.e., by an ellipsoid or paraboloid. This class of problems satisfies
the low rank property in the sense that the dimension of semi-definite constraint is
small. We showed in Konno et al. [11] that SDP whose rank of semi-definiteness is
less than 10 can be solved very fast by the cutting plane algorithm. The success de-
pends upon the fact that we can generate the most violated constraint very cheaply
and that an optimal solution of tightly relaxed linear program can be recovered by
applying a few dual simplex pivots to the optimal dictionary.

The purpose of this paper is to show that this algorithm can be extended to gen-
eral nonlinear semi-definite programming problems, i.e., minimization of a not ne-
cessarily convex function f (X) subject to semi-definite constraints on X ∈ Rn×n.
Convergence of the algorithm is guaranteed if the feasible region is bounded. Also,
it can be established under coerciveness condition and under a weaker condition
when f is concave.

In the next section, we will reformulate a nonlinear semi-definite programming
problem as a linearly constrained semi-infinite programming problem. Then we
present cutting plane algorithms using two different types of cuts. One is the ex-
tension of Kelley’s cut which is applicable to any class of SDPs. The second is
the extension of Veinott’s supporting hyperplane method, which is applicable to
the case where the feasible region has an interior. Convergence property of these
algorithms will be discussed in detail. Section 3 will be devoted to three successful
applications. First is the failure discriminant analysis, where multi-dimensional
data are separated into two classes by a convex quadratic surface. The second ex-
ample is semi-definite regression and the third example is the estimation of failure
probability by using a semi-definite logit model.
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2. Cutting Plane Algorithm.

Let us consider the following minimization problem:

minimize f (X)

subject to Ai • X = bi, i = 1, · · · ,m,

X � 0,
(1)

where Ai = (ai
jk) ∈ Rm×n, bi ∈ R1 are constants, f : Rn×n → R1 is a (not

necessarily convex) function and X = (xjk) ∈ Rn×n are variables. Here the matrix
product Ai • X denotes the dot product of matrices, i.e.,

n∑
j=1

n∑
k=1

ai
jkxjk.

Also, X � 0 means that X is a symmetric positive semi-definite matrix. We will
assume that the problem (1) contains no redundant constraints.

First, let us note that the equality constraints Ai • X = bi, i = 1, · · · ,m can
be eliminated from (1) by using the standard procedure in linear programming. Let
xB ∈ Rm, xN ∈ Rn×n−m (with xB = (xjk, (j, k) ∈ B), xN = (xjk, (j, k) ∈ N)

and B,N ⊂ {1, · · · , n} × {1, · · · , n}, |B| = m, |N | = n × n − m), be the
sets of basic and nonbasic variables of xjk’s, respectively, so that

xB = (AB)
−1b − (AB)

−1(AN)xN,

where AB, AN are submatrices of the matrix A of the system of linear constraints
in (1). Let Q(xN) ∈ Rn×n be the matrix X in which the components xjk with
(j, k) ∈ B are replaced by the corresponding components of xB defined by (2).
Then Q(xN) is a matrix whose components are linear functions of xN , i.e. a matrix
of the form Q(xN) = Q0 +∑

(j,k)∈N xjkQjk with Q0, Qjk ∈ Rn×n, so the problem
(1) can be rewritten as

minimize F(xN) subject to Q(xN) � 0 (2)

where F(xN) = f (Q0 + ∑
(j,k)∈N xjkQjk) is a function of xN . Let us note that F

is convex(concave) when f is convex(concave).
The condition Q(xN) � 0 which is a linear matrix inequality is equivalent to

dTQ(xN)d � 0, ∀d ∈ Bn (3)

where Bn is the n-dimensional unit ball. Therefore, setting y = xN ∈ Rn×n−m, the
problem can be written as

minimize F(y)

(P ) subject to dTQ(y)d � 0, ∀d ∈ Bn.
(4)
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Let us assume that the function F(y) is coercive, in the sense that

|F(y)| → +∞ whenever ‖y‖ → +∞
and consider a polyhedron Y 0 in Rn×n−m containing the constraint set of (P ), for
instance

Y 0 = {y ∈ Rn×n−m | dT
j Q(y)dj � 0, j = 1, · · · , J }.

Then the relaxed problem

minimize F(y)

(P0) subject to y ∈ Y 0
(5)

has a finite optimal solution y0, because otherwise there would exist a sequence yk

such that F(yk) → −∞ while ‖yk‖ → +∞. Obviously, if Q(y0) � 0 then y0 is
an optimal solution of the original problem (P ).

If Q(y0) �\ 0, i.e., min{gTQ(y0)g | g ∈ Bn} < 0, we will calculate a vector g

such that gTQ(y0)g < 0 and add a new constraint

gT Q(y0)g � 0 (6)

to the problem (5) above to obtain a tighter relaxation of (P ).
We are now ready to describe a basic procedure of the cutting plane algorithm.

Cutting Plane Algorithm (Prototype)
1. k = 0.
2. Solve a linearly constrained minimization problem

min {F(y) | y ∈ Y k}. (7)

and let yk be its optimal solution.
3. If Q(yk) � 0, then yk is an optimal solution of (P ). Otherwise choose a vector

gk such that gT
k Q(yk)gk < 0 and

Y k+1 = Y k ∩ {y | gT
k Q(y)gk � 0}

k = k + 1 and go to 2. �
REMARK 1. We implicitly assumed here that the subproblem (7) can be solved in
an efficient way. If, for example f is linear or convex, (7) can be solved by standard
methods. Also, there exists a number of efficient algorithms when f is concave, or
it has so called low rank nonconvex structure, e.g., convex multiplicative functions
or generalized linear fractional functions, etc [14].

Convergence property and efficiency of the cutting plane algorithm depends
upon the choice of the cut in Step 3. One possible choice is the most violated
constraint at yk which can be obtained by solving the following problem:

min{gT Q(yk)g | g ∈ Bn} (8)
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An optimal solution gk of this problem is given by the eigenvector of Q(yk)

corresponding to the minimal(negative) eigenvalue of Q(yk) [6]. Algorithm using
this cut may be considered as an adaptation of the Kelley’s algorithm [10].

ALGORITHM 1.
1. k = 0, ε > 0.
2. Solve the subproblem

min {F(y) | y ∈ Y k}.
and let yk be its optimal solution.

3. Let αk be the smallest eigenvalue of Q(yk). If αk > −ε, then terminate.
Otherwise let gk be the eigenvector of Y k corresponding to αk and

Y k+1 = Y k ∩ {y | gT
k Q(y)gk � 0}

k = k + 1 and go to 2. �
THEOREM 1. If the feasible region of (4) is bounded, then any accumulation
point y∗ of the sequence {yk} is an ε-optimal solution of (4).

Proof. Let (ykj ,gkj
) be a sequence converging to (y∗,g∗). If y∗ is not an ε-

optimal solution, then g∗T Q(y∗)g∗ < −ε. This is a contradiction, since gT
kj

Q

(ykj+1)gkj
� 0 for all j , so that g∗T Q(y∗)g∗ � 0. �

If the feasible region of (4) is unbounded, then we need to impose some technical
condition to prove convergence of the algorithm. Coersiveness of F is one such
condition.

THEOREM 2. Under the coerciveness assumption, either Algorithm 1 terminates,
yielding an ε-optimal solution, or it generates a bounded sequence of solutions
{yk}, any accumulation point of which is an ε-optimal solution of (P ).

Proof. If the algorithm generates an unbounded sequence {yk} then by coer-
civeness of F(·) we must have | F(yk) | → +∞, conflicting with the fact
that F(y0) � F(y1) � · · · � F(yk) � F(a) for any a ∈ Y . Therefore, the
sequence {yk}, if infinite, is bounded. The convergence of the algorithm can then
be established by a standard argument (see, e.g., [10]). �

Although this algorithm works well when F(·) is linear or convex and n is small,
it may not be fast enough.

To accelerate convergence, let us consider the supporting hyperplane method of
Veinott [20].

Let y0 be a point in the interior of the constraint set D := {y | Q(y) � 0},
i.e., such that Q(y0) � 0, and define

λk = argmax{λ | Q(y0 + λyk) � 0}
ỹ
k = y0 + λky

k (9)
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Then ỹk lies on the boundary of D.

THEOREM 3. Let

g̃k = argmin{gTQ(ỹ
k
)g | g ∈ Bn \ {0}},

then the equation

g̃k
T
Q(y − ỹ

k
)g̃k = 0

defines a supporting hyperplane of D at ỹ
k.

Proof. From (8) we must have Q(yk) � 0 but Q(ỹ
k
) �\ 0, consequently, min

{gTQ(ỹ
k
)g|g ∈ Bn}} = 0. Thus g̃

T
k Q(y)g̃k � 0 = g̃

T
k Q(ỹ

k
)g̃k and hence,

g̃
T
k Q(y − ỹ

k
)g̃k � 0 for every y ∈ D. �

ALGORITHM 2.
1. Same as Algorithm 1.
2. Same as Algorithm 1.
3. Let αk be the smallest eigenvector of Q(yk). If αk > −ε, then terminate.

Otherwise, calculate g̃
k by (8) and ỹk by (9).

Y k+1 = Y k ∩ {y | g̃k
T
Q(y)g̃k � 0}

k = k + 1 and goto 1.

THEOREM 4. Under the coerciveness assumption, either Algorithm 2 terminates,
yielding an ε-optimal solution, or it generates a bounded sequence of solutions
{yk}, any accumulation point of which is an ε-optimal solution of (P ).

Proof. As previously, if the sequence {yk} is infinite it must be bounded. The
convergence follows, then, by the same argument as used in Veinott [20]. �
REMARK 2. If we define ϕ(y) = −min{gTQ(y)g|g ∈ Bn} then ϕ(·) is a convex
function (pointwise maximum of a family of affine functions), and the constraint
Q(Y ) � 0 is equivalent to ϕ(y) � 0. Since Bn is a compact set, it follows from a
well known result of convex analysis ([9], Chapter 4, Theorem 3) that gk in Step
3 of Algorithm 1 is a subdifferential of the convex function ϕ(y) at yk, while g̃k in
Step 3 of Algorithm 2 is a subdifferential of the same function at ỹk.

THEOREM 5. If f (X) is concave in the above problem, algorithm converges
under a weaker assumption than coerciveness. Namely, it suffices to assume that
for some α < F(y0) the set {y|F(y) = α} is bounded.

Proof. See Tuy ([17], or [8], Theorem VI.2). �
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3. Applications

In this section, we will present three practical problems formulated as (P ) and
report the results of computational experiments. All experiments were conducted
on Pentium III Processor (500 MHz) using C/C++, OS:Vine Linux and used House-
hoder’s algorithm to calculate the minimal eigenvalue of a symmetric matrix. Also,
linear subproblem was solved by CPLEX6.5 and convex subproblem was solved
by NUOPT 5.0.

3.1. SEPARATION OF MULTI-DIMENSIONAL DATA BY AN ELLIPSOIDAL

SURFACE

Let={a1, · · · , am} ⊂ Rn, {b1, · · · , bl} ⊂ Rn be two sets of data in Rn and let us
consider the problem of finding a convex quadratic surface (ellipsoid or paraboloid)
separating these two sets.

One such example is reported in [12, 13], where ai’s are financial data as-
sociated with ith ongoing companies and bj ’s are financial data associated with
failed companies. There is a good reason to assume(See [13] for details) that ai’s
are distributed within certain ellipsoid (or paraboloid) and that bj ’s are distributed
outside of such an ellipsoid.

If there exists D ∈ Rn×n, c ∈ Rn, c0 ∈ R1 such that D � 0 satisfying

aT
i Dai + cT ai < c0, i = 1, · · · ,m,

bT
j Dbj + cT bj > c0, j = 1, · · · , l,

then

E = {x ∈ Rn | xT Dx + cT x = c0}
is a separating ellipsoid (or paraboloid).

In general, such an ellipsoid may not exist. In such a case, we consider the fol-
lowing semi-definite programming problem (10) in view of the remarkable success
reported in [4, 16]:

minimize λ
1

m

m∑
i=1

yi + (1 − λ)
1

l

l∑
j=1

zj

subject to aT
i Dai + cT ai − yi � c0 − 1, i = 1, · · · ,m,

bT
j Dbj + cT bj + zj � c0 + 1 , j = 1, · · · , l,

D � 0, yi � 0, i = 1, · · · ,m, zj � 0, j = 1, · · · , l,

(10)

where yi represents the distance of ai from E− into the failure region and zj rep-
resents the distance of bj from E+ into the ongoing region (see Figure 1). Also
λ ∈ (0, 1) is the weight representing the relative importance of the two types of
classification error.
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Figure 1. Ellipsoidal surface.

Table 1. CPU time (sec.)

No. of attributes Data Set 1 Data Set 2

1st iteration n = 3 n = 6 n = 9 n = 7

0.05 1.20 1.41 1.58

10−3 0.11 2.22 16.68 19.92

ε 10−4 0.12 2.71 23.04 25.04

10−5 0.14 3.17 29.57 31.11

10−6 0.16 3.66 36.87 36.48

The term ±1 in the right hand side of the inequality constraints of (10) are
added for normalization purpose.

We solved the problem (10) by using two different data sets. The first set con-
sists of 428 data out of which 40 belong to failure group. The second set consists
of 1701 companies out of which 119 belong to failure group. We used Kelley’s
cutting plane algorithm(Algorithm 1) since it is not easy to find a positive definite
matrix satisfying the constraints. Table 1 shows their computation time for solving
these problems.

This method was used for predicting the failure of companies during the next
year. We compared the rate of wrong prediction of this model with linear and
general quadratic model and found that the semi-definite model leads to significant
improvement over other methods.
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Let us note that we can solve problems up to n = 9 without too much difficulty
when the number of data is 428 (Data Set 1). The efficiency depends upon the very
efficient dual simplex procedure of CPLEX6.5. When, however the number of data
is 1701 (Data Set 2), considerably more computation time is required. In fact, the
problem with (n, m)=(7, 1701) requires almost the same amount of time for solving
the problem with (n, m)=(9, 408). This is because solving linear subproblems tends
to become more difficult as n increases. The maximal conceivable size of the real
world failure discrimination problem is n = 9 and m = 3000 ∼ 5000, so that it is
within reach of the cutting plane algorithm.

Let us note here that a cutting plane algorithm turned out to be over 100 times
faster than SDPA 5.0, a state-of-the art interior point software. For more detailed
discussions about failure discriminant analyses and the advantage of semi-definite
separation over other methods, readers are referred to [12].

Let us note that the objective function is not coercive, but an alternative proof
of convergence of this method without assuming coerciveness is given in [11].

3.2. SEMI-DEFINITE REGRESSION

Let us consider the following linear regression model:

Y = d0 + d1X1 + · · · + dmXm + ε, (11)

where Xj ∈ R1, j = 1, · · · ,m and Y are sets of m+1 variables and ε is a random
variable. Also dj , j = 0, · · · , n are constants to be estimated.

Given T data sets {(Yt , X1t , · · · , Xmt ), t = 1, · · · , T }, the least square estim-
ate of constants dj , i = 0, 1, · · · ,m is given by minimizing the sum of the squares
of the residual:

S =
T∑

t=1


Yt −


d0 +

m∑
j=1

djXjt







2

. (12)

When the fitting is not good enough, we sometimes use quadratic model:

Y = d0 +
m∑

j=1

djXj +
m∑

j=1

m∑
k=1

djkXjXk + ε, (13)

where djk = dkj ,
∀j, k.

Least square estimates of dj , j = 0, · · · ,m, and djk, j, k = 1, · · · ,m can be
obtained by minimizing

T∑
t=1


Yt −


d0 +

m∑
j=1

djXjt +
m∑

j=1

m∑
k=1

djkXjtXkt







2

(14)
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Table 2. (Algorithm 1): CPU time (s) (Iteration)

εn 5 6 7 8

10−3 0.55(19) 1.12(24) 1.92(27) 4.79(40)

10−4 0.7(23) 1.82(35) 3.65(43) 8.74(60)

10−5 0.98(30) 2.87(47) 6.4(61) 15.65(83)

10−6 1.33(37) 4.07(58) 10.83(81) 28.93(113)

However, this model often leads to overfitting because we have introduced m(m +
1)/2 new parameters djk. To obtain a good fitting while escaping the risk of over-
fitting, we will impose a condition that the surface

S =

(X1, · · · , Xm) | d0 +

m∑
j=1

djXj +
m∑

j=1

m∑
k=1

djkXjXk = const


 (15)

is convex, i.e., an ellipsoid or paraboloid. The degree of freedom of the ellipsoidal
regression model is significantly smaller than general quadratic regression model.

The resulting problem is

minimize
T∑
t=1


Yt −


d0 +

m∑
j=1

djXjt +
m∑

j=1

m∑
k=1

djkXjtXkt







2

subject to D = (djk) � 0.

(16)

We can choose any positive definite matrix D0 in the supporting hyperplane al-
gorithm.

We used up to 1142 daily data of the TOPIX index, as Yt, t = 1, · · · , 1142 and
solved problem (16) using up to eight explanatory variables Xj . Table 2 shows the
computational result for Algorithm 1. Also Table 3 shows the result of Algorithm
2 when we choose D0 = I .

Let us note that the objective function in this case is coercive.
We see from these tables that Algorithm 2 performs better than Algorithm 1, as

expected. However, both take more computation time than for the linear case. This
is due to the fact that we had to solve QP subproblems from scratch every time.
Computation time would have been much less if we implement more efficient dual
type algorithm for solving QP subproblem with one additional linear constraint.

Residual error associated with semi-definite regression model was about 30%
less than that of linear regression model in this case.
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Table 3. (Algorithm 2): CPU time (s) (Iteration)

εn 5 6 7 8

10−3 0.35(19) 0.73(24) 1.25(27) 3.27(41)

10−4 0.45(23) 1.09(33) 2.57(44) 6.58(63)

10−5 0.66(30) 1.91(47) 5.32(66) 12.14(86)

10−6 0.99(39) 2.71(57) 8.21(81) 19.61(107)

3.3. SEMI-DEFINITE LOGIT MODEL FOR ESTIMATING THE FAILURE

PROBABILITY

Financial institutions are often required to estimate the failure probability of enter-
prises based upon the information about their financial data.

Let xi ∈ Rn be the financial data associated with enterprises Ai, i = 1, · · · ,m
out of which A1, · · · , Ak are ongoing and Ak+1, · · · , Am are failed enterprises.
Linear logit model is one very popular method for estimating the failure probability
of ongoing enterprises.

Let

f (x : β, β0) = exp{βT x + β0}
1 + exp{βT x + β0}

(17)

be the failure probability corresponding to x ∈ Rn, where β ∈ Rn, β0 ∈ Rn are
parameters to be estimated.

Let L(β, β0) be the likelihood function associated with xi , i = 1, · · · ,m. Then

L(β, β0) =
m∏
i=1

f (xi;β, β0) (18)

=
k∏

i=1

exp{βT xi + β0}
1 + exp{βT xi + β0}

m∏
i=k+1

1

1 + exp(βT xi + β0)
. (19)

Standard method can be applied to maximize L(β, β0) since lnL(β, β0) is a con-
cave function.

This model is based on the assumption that the failure probability is a monotone
function of each financial data. In fact,

∂

∂xj
lnf (x;β, β0) = βj

1 + exp{βT x + β0}
(20)

so that f (x;β, β0)is an increasing (decreasing) function depending upon the sign
of βj .

However, failure probability need not be monotone for all variables. Associated
with some variable is certain ‘desirable’ range in which enterprises are considered
to perform well. Linear logit model is not valid in this case.
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In [15], Konno and Wu introduced a semi-definite logit model to handle non-
monotonic case. Let

f̃ (x;D,β, β0) = exp{xT Dx + βT x + β0}
1 + exp{xT Dx + βT x + β0} (21)

where D = (dij ) � 0. Let us note that f need not be monotonic.
The maximum likelihood estimation problem reduces to the following convex

minimization problem under semi-definite constraint:

minimize
m∑
i=1

ln{1 + exp(xT
i Dxi + βT xi + β0)}

−
k∑

i=1

{xT
i Dxi + βT xi + β0}

subject to D � 0 .

(22)

We solved problem (22) using 865 data out of which 74 belong to the failure
group. We used NUOPT5.0 for solving linearly constrained convex minimization
problems. Figure 2 shows the computation time for solving (22) as a function of n.
Table 4 shows the amount of computational time as a function of ε.

Let us note that the algorithm converged without fail for all test problems though
the objective function is not coercive.

From the practical point of view, ε = 10−4 is good enough since we observe
no meaningful difference in the solution when we decrease ε further. Computation
time increases almost linearly as we increase the number of data, as expected. For
details about this model readers are referred to [15].

4. Conclusions and Future Direction of Research

We proposed (cutting plane) algorithms for minimizing a (not necessarily convex)
function subject to linear and semi-definite constraints and showed that the al-
gorithm converges under coerciveness condition and under somewhat weaker con-
dition when the objective function is concave. Also, computational results for three
practical problems show that these algorithms can solve them within a practical
amount of time.

Let us note that the efficiency of the algorithm crucially depends upon the
following facts

(i) The dimension of the semi-definite matrix X is small, i.e., less than say 10.
(ii) Subproblem (8) can be solved reasonably fast.

The class of objective function f amenable to our approach include, among others
convex functions and low rank nonconvex functions (See [14]).

When the dimension of the matrix is over 15, computation time will explode as
observed for other outer approximation algorithm. Therefore, we need to use other
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Figure 2.

algorithms less sensitive to the dimension of X. Such examples are interior point
algorithms [7, 21].

However, as demonstrated in [11–13], outer approximation method is much
superior to standard interior point algorithm such as SDPA 5.0, when the ob-
jective function is linear (Section 3.1). There may be other interior point based
codes which can solve problems of Section 3.2 and 3.3 faster, but it is usually not
easy to choose appropriate value of parameters to obtain good results, whereas our
algorithm is much easier to implement.
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In addition to the problems discussed in this paper, there exists a number of
important problems which may be solved by our algorithms. One recent example
is ‘optimal fitting of volatility matirix’ discussed in [3].

As a final remark, our algorithm can be applied to a problem with linear vari-
ables in addition to semi-definite variables. The efficiency of algorithm does not
depend on the number of linear variables.
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